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High-performance computing (HPC) architectures are trending toward manycore paradigms
such as graphics processing units (GPUs). Approximately half of the top 100 publicly disclosed
supercomputers in the world utilize GPU accelerators for performance. This is in contrast to
a decade ago, where there were only a few such machines in the top 100. It is not currently
possible to compile and run legacy central processing unit (CPU) software efficiently on
GPUs without significant refactoring. Though a number of frameworks offering performance
portability exist, none offer a standardized specification that is supported by all major hardware
vendors. Additionally, experiences show that obtaining a high percentage of peak performance
often requires architecture-specific code. This work details a pragmatic multi-architecture
computational fluid dynamics library focused on aerospace problems across the speed range
from low subsonic to hypersonic flows involving thermochemical nonequilibrium. A thin
abstraction layer above NVIDIA CUDA C++ is utilized, which enables primarily single-source
software currently capable of running efficiently on multicore CPUs, NVIDIA GPUs, AMD
GPUs, and Intel GPUs. Results on various problems of interest across the speed range are
presented and performance is compared between various architectures.

I. Introduction

A graphics processing unit (GPU) may be thought of as a specialized chip that uses over an order of magnitude
greater concurrency than multicore central processing units (CPUs) to overcome latency and improve floating-point

operation throughput. Since the advent of NVIDIA’s Compute Unified Device Architecture (CUDA) [1] in 2007, which
leverages GPUs for general-purpose computing, GPUs have dramatically accelerated a broad range of applications
from deep learning [2] to traditional scientific simulations [3]. Current algorithms may require adaptation to exploit
the concurrency and throughput of emerging hardware such as GPUs. Seven of the top ten supercomputers listed on
the current TOP500 [4] utilize GPUs. Almost half of the current top 100 machines utilize NVIDIA GPUs. Emerging
U.S. exascale systems rely on Intel and AMD GPU acceleration for performance [5–7]. Effective utilization of this
next-generation hardware is key for design and analysis of next-generation aerospace vehicles according to the NASA
CFD Vision 2030 study [8].

To effectively utilize manycore processors such as GPUs, algorithms and software must be appropriately adapted to
exploit their high levels of parallelism. Many programming models for generating GPU code exist. One of the earliest
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and most popular parallel programming models for GPUs is NVIDIA CUDA. CUDA is a C++-based programming
model that enables users to execute compute kernels and control NVIDIA GPUs. One limitation of CUDA is that
it is proprietary and only NVIDIA GPUs are supported. While NVIDIA GPUs are currently the most widely used
GPUs for scientific computing, it is desirable to run the same software on multiple architectures. Open Computing
Language (OpenCL) was initially developed by Apple and formally released by the Khronos Group in 2009. OpenCL is
an independent standard for heterogeneous architectures including CPUs and GPUs [9]. The OpenCL C++ specification
was introduced in OpenCL 2.1 in 2015. While open, some vendors have chosen not to support the latest standards.
The latest OpenCL 3.0 standard requires only OpenCL 1.2 support; features beyond OpenCL 2.0 are optional. This
optional support hinders the advancement of OpenCL as a portability standard. AMD’s Heterogeneous Interface for
Portability (HIP) is an open source software stack for GPU computing released in 2016 [10]. HIP is a C++ dialect,
an abstraction similar to CUDA, designed to enable portable GPU C++ code for AMD and NVIDIA GPUs. AMD
provides tools to convert CUDA to HIP. AMD is also working on a HIP CPU runtime to enable CPUs to run HIP
code. CHIP-SPV [11] is a HIP implementation in development cosponsored by Argonne National Laboratory that
supports OpenCL and Intel Level Zero [12] to support upcoming Intel GPUs. Directive-based approaches include
OpenMP [13] and OpenACC [14]. OpenMP has supported GPUs since version 4.0 in 2013. SYCL is a cross-platform
abstraction layer standardized by the Khronos Group that allows users to write single-source compute kernels in ISO
C++. Initially released in 2014 [15], SYCL 2020 generalized the standard to enable the use of any API such as PTX for
NVIDIA GPUs. Multiple implementations exist including Intel Data Parallel C++ (DPC++), released in 2020 [16],
and ComputeCpp by Codeplay [17], a software company now owned by Intel. Other vendors have yet to fully support
the evolving standard. Kokkos is a C++ programming model developed primarily by Sandia National Laboratory and
released in 2014 [18] to enable performance portable applications for HPC platforms. RAJA is a similar portability layer
developed at Lawrence Livermore National Laboratory also released in 2014 [19]. There is also an effort to extend ISO
C++ to support platform-agnostic parallelism [20]. There are many different approaches to accelerator programming
and this list is not exhaustive (e.g., Refs. [21, 22]). Ideally, programmers would write software in a high-level language
with standardized constructs supported by major hardware vendors and obtain satisfactory performance across the
spectrum of contemporary HPC architectures.

Although many early adopters of HPC architectures based on NVIDIA hardware leveraged the popular CUDA
ecosystem, next-generation leadership-class supercomputers currently being procured by the Department of Energy
(DOE) rely on AMD and Intel GPU hardware. The DOE Exascale Computing Project (ECP) details 22 different
programming models used across their 62 application codes, with CUDA, Kokkos, HIP, and OpenMP used in 24%,
23%, 19%, and 19% of codes, respectively [23]. The ECP has not yet reached a clear consensus with regard to GPU
programming models.

The NASA Langley Research Center unstructured-grid CFD solver FUN3D [24], originally a Fortran code, has
recently been adapted for NVIDIA GPU architectures [25, 26] and has been used to demonstrate excellent performance for
perfect gas and thermochemical nonequilibrium flows [27]. Recent work on the Oak Ridge National Laboratory Summit
system [28] has demonstrated the ability of FUN3D to run efficiently on thousands of NVIDIA V100 GPUs [29, 30]. This
was done by rewriting the traditional Fortran kernels in CUDA C++. At the time, it was decided by the FUN3D developers
that CUDA would provide the most acceptable balance between performance and productivity [25]. Performance is
paramount for GPU adoption by research organizations such as NASA, which often use legacy software. Not only must
GPUs deliver higher performance per dollar than CPUs, they must also justify the cost of rearchitecting legacy software.

To run FUN3D on all major CPU and GPU architectures, a thin abstraction layer over FUN3D’s CUDA code has
been developed. The layer abstracts GPU concepts such as kernel launching and shared memory to enable a single
source file to be compiled by different vendor compilers to produce code for different architectures. This enables
FUN3D to run on multicore CPUs through ISO C++, NVIDIA GPUs through CUDA C++, AMD GPUs through HIP,
and Intel GPUs through SYCL. These abstractions are used in the FUN3D Library for Universal Device Acceleration,
henceforth FLUDA. FLUDA was originally developed for NVIDIA GPUs, thus the code is structured differently than
the original Fortran. To run FLUDA on CPUs, this GPU-oriented code is run with a single thread (with MPI for
parallelism). It is our hypothesis that modern, superscalar CPUs will better tolerate GPU-oriented code than the reverse.
To ensure high performance, several key kernels in FLUDA have architecture-specific implementations [31–33]. This
architecture-specific code comprises ≈2% of the library.

This paper will first describe the governing equations and numerical methods for the flow solver. The abstractions
will then be described including the design and implementation of the kernels. Next, results will be demonstrated
including device-level performance using the proposed approach on various problems across the speed range.
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II. Governing Equations and Numerical Methods
FUN3D, an unstructured-grid node-based finite-volume CFD solver developed and maintained at the NASA Langley

Research Center, is widely used for analysis of turbulent flows across the speed range from incompressible to hypersonic
regimes [24]. Specifically, we are focusing on the perfect gas and thermochemical nonequilibrium capabilities of the
code for this work, although an incompressible gas model is also available and supported by the current approach.
The governing equations for compressible reacting flow are the conservation of species, mixture momentum, and total
energy:
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where 𝑦𝑠 is the mass fraction of species 𝑠, 𝜌 =
∑𝑁𝑠

𝑠=1 𝜌𝑠 is the mixture density, 𝜌𝑠 = 𝜌𝑦𝑠 is the species density of species
𝑠, 𝑢𝑖 is the 𝑖th component of the velocity, and 𝐸 is the total energy. 𝐽𝑠 𝑗 is the 𝑗 th component of the diffusive flux, ¤𝜔𝑠

is the chemical source term of species 𝑠, 𝑝 is the pressure, 𝜏𝑖 𝑗 is the shear-stress tensor, ¤𝑞 𝑗 is the 𝑗 th component of
the heat flux, and ℎ𝑠 is the enthalpy of species 𝑠. Pressure is modeled as an ideal gas, heat transfer is modeled with
Fourier’s law, species diffusion is modeled using Fick’s law, and the shear-stress is modeled with a Newtonian model.
NASA polynomials [34] are used to compute thermodynamic properties on a per-species basis. The transport properties
(diffusivity, viscosity, and thermal conductivity) are computed using collision integrals [35]. The compressible perfect
gas equations can be obtained by assuming a single perfect gas species with thermally perfect thermodynamic properties
and simplified transport properties (e.g., constant Prandtl number and Sutherland’s law). The full details of the governing
equations, including the two-temperature model for high-temperature flows [36], can be found in Ref. [35].

A median-dual finite-volume approach is used for spatial discretization on general unstructured grids containing
tetrahedra, pyramids, prisms, and hexahedra. A dual-grid is generated by bisecting every edge and connecting them to
cell centroids to generate polyhedra. Inviscid fluxes are computed at each dual-face using an approximate Riemann solver
with second-order accuracy obtained using an unstructured Monotonic Upstream-centered Scheme for Conservation
Laws (UMUSCL) reconstruction [37] with unweighted least-squares gradients. Viscous fluxes are computed using
a novel edge-based method [38], equivalent to a finite-element Galerkin-based approach. The discrete equations are
generally integrated in time using implicit backward-difference formulae, although explicit time integration is also
supported. For thermochemical nonequilibrium flows, chemistry is solved fully coupled with momentum and energy,
with the option to tightly couple turbulence or solve loosely using the same approach and implementation used for perfect
and incompressible gas applications. A multicolor point-implicit approach is used to obtain approximate solutions of
the linear system of equations at each nonlinear iteration using 15 sweeps by default.

III. Software Design and Implementation
FUN3D was originally a CPU-based code written in Fortran. Coarse-grained message passing via the MPI

standard [39] with conventional domain decomposition techniques are used for parallelism, although a hybrid
MPI+OpenMP [13] implementation is also partially supported. Viewed from a high level, FUN3D is organized as a
series of compute kernels that transform mutable data structures (examples include the residual vector and Jacobian
matrix). The original development of the GPU-only FLUDA is detailed in Ref. [27]. FLUDA contains all compute
kernels necessary for solving the discretized governing equations. FLUDA currently comprises roughly 60,000 lines of
code and includes support for incompressible, perfect gas, and thermochemical nonequilibrium gas flows with multiple
turbulence models.

Recently, FUN3D has been refactored to facilitate component-based development [40]. FUN3D has been rewritten
as a high-level C++ driver, tentatively named NCFV for Node-Centered Finite-Volume, which uses the same FLUDA
kernels as FUN3D’s legacy Fortran-based flow solver. NCFV has been designed as an architecture-aware host plus
device(s) model as its first principle. NCFV utilizes an interoperable API [41] to facilitate sharing of related functionality
(e.g., I/O, grid, visualization) with other FUN3D components such as the high-order stabilized finite element solver
(SFE) [42]. This section will detail the multi-architecture GPU-first design approach.
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A. GPU-First Approach to Performance Portability
Legacy scientific software begins as a CPU code as a matter of necessity, generally speaking. FUN3D was first a

Fortran code. FUN3D’s GPU library, FLUDA, was adapted from that Fortran code into CUDA C++. This is presumably
the way the majority of scientific codes evolve from CPU-only to GPU-accelerated (though not necessarily using CUDA
as the GPU programming model). AMD GPU support was added to FLUDA using a thin abstraction layer that translates
to HIP or CUDA through C preprocessor macros. It soon became clear that CPU support could be added through these
macros by treating the CPU as equivalent to a GPU with a single thread. In FUN3D’s case of MPI-only parallelism, this
equivalence holds generally. Extension to SYCL was performed with the same abstractions enabling Intel GPU support.
In total, the preprocessing macros comprise roughly 500 lines of code. While it is possible in theory to run on many
architectures with some of the programming models we employ here, it has not yet been attempted and is left for future
work. For example, HIP can be used on NVIDIA and AMD GPUs, CPUs (although HIP-CPU development is still a
work in progress), and Intel GPUs (also in progress). SYCL can also be used on these architectures.

Listing 1 shows a generalized example FLUDA kernel that loops over the edges of a grid. Abstraction macros are
typically capitalized versions of CUDA constructs such as atomicAdd. These macros will be translated appropriately
for each architecture via the header file platform.h. In the case of constructs such as THREADIDX_X, the CPU is
treated as a GPU with a single thread. Note that use of a grid-stride loop may not always be possible or may hamper
performance. In these scenarios, a CPU_GPU macro is used, which becomes its first argument if compiling for CPU
and its second otherwise. This macro is most commonly used for loop control. It is possible to use a grid-stride loop
in place of the CPU_GPU macro to avoid code divergence, as is done in Listing 1, but experience has shown that GPU
compilers will use fewer registers per thread when an if condition is used in place of a grid-stride loop. We find that, in
FLUDA, register pressure is the strongest constraint on GPU performance.

Listing 1 Example FLUDA edge (dual-face) kernel.
1 # i n c l u d e " p l a t f o r m . h "
2

3 # d e f i n e EDGE_CONNECTIVITY( j , i ) e d g e _ c o n n e c t i v i t y [ ( j ) + ( s i z e _ t ) ( i ) ∗2 ]
4

5 __DEVICE__
6 doub l e f ( c o n s t doub l e v a r l , c o n s t doub l e v a r r )
7 {
8 r e t u r n 0 . 5 ∗ ( v a r l + v a r r ) ;
9 }

10

11 __GLOBAL__
12 vo id examp l e_ke rn e l ( c o n s t i n t nedges , c o n s t i n t ∗ e d g e _ c o n n e c t i v i t y , c o n s t doub l e ∗ var ,
13 c o n s t doub l e ∗ a rea , doub l e ∗ r e s i d u a l )
14 {
15 i n t n = BLOCKIDX_X ∗ BLOCKDIM_X + THREADIDX_X;
16 i n t g r i d _ s i z e = BLOCKDIM_X ∗ GRIDDIM_X;
17

18 / / CPU_GPU( f o r ( ; n < nedges ; n++) , i f ( n < nedges ) )
19 f o r ( ; n < nedges ; n += g r i d _ s i z e )
20 {
21 i n t node l = EDGE_CONNECTIVITY( 0 , n ) ; / / L e f t s t a t e
22 i n t node r = EDGE_CONNECTIVITY( 1 , n ) ; / / R igh t s t a t e
23

24 doub l e f l u x = f ( va r [ node l ] , v a r [ node r ] ) ∗ a r e a [ n ] ;
25

26 ATOMICADD(& r e s i d u a l [ node l ] , f l u x ) ;
27 ATOMICADD(& r e s i d u a l [ node r ] , − f l u x ) ;
28 }
29 }
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The interior inviscid Jacobians are used as an example to emphasize the impact of a GPU-first approach. A 5-species,
two-temperature model physics set is used, which leads to Jacobian blocks of size 10 by 10. A loop over edges
(dual-faces) of the grid is performed, and the Jacobians are computed and added to the global data structures to form the
global Jacobian matrix. The original Fortran implementation computes and stores derived state at each edge as well
as the intermediate Jacobians themselves before finally adding the contributions to the global data structures. This
kernel is naïvely converted to FLUDA in Listing 2. The primary difference between the Fortran and FLUDA naïve
implementation is that variable length arrays (VLAs) are not standard in C++, and therefore, in FLUDA, a maximum
bound is used on species, energies, and turbulence variables (11, 2, and 2, respectively) to size the local data. FLUDA
kernels are generally templated on the specific physics set for performance reasons, but templates were not used in the
naïve example to match the Fortran as closely as possible. This kernel can compile without modifications and run on
CPUs through ISO C++, NVIDIA GPUs through CUDA, AMD GPUs through HIP, and Intel GPUs through SYCL
using FLUDA C preprocessor macros. The naïve FLUDA CPU kernel is roughly 1.35× faster than the Fortran kernel,
attributed primarily to the compile-time local array sizes mentioned previously. However, running this naïve kernel
will lead to poor performance on GPU architectures. Storing a Jacobian in local memory on each thread will greatly
increase register pressure, which lowers GPU occupancy and can lead to spilling, which may require expensive global
memory operations. Table 1 shows relative performance for the Fortran and FLUDA kernels running a grid consisting
of approximately one million points. A dual-socket Intel Skylake 6148 CPU node (40 cores) outperforms the naïve
parallel kernel on an NVIDIA V100 GPU by a factor of two. We expect a factor of ≈3.5 in favor of the NVIDIA V100
GPU based on the hardware memory bandwidth ratio, as FUN3D kernels have low arithmetic intensity and are thus
bound by main memory performance.

Employing hierarchical parallelism, as shown in Listing 3, reduces register pressure and can improve occupancy and
performance. In this approach, a group of threads works on each edge. The edge data can be stored in shared memory
instead of thread-local memory. Each component of the Jacobians is computed in place and added to the global data in a
coalesced fashion. This hierarchical kernel runs on all architectures without device-specific code. The hierarchical
kernel runs 1.12× slower than the naïve kernel on the Skylake CPU (though still faster than Fortran), but is 7.60× faster
than the naïve kernel on the V100 GPU. The relative performance between the optimal CPU and optimal GPU kernels is
roughly the memory bandwidth ratio.

Listing 2 Naïve parallel edge (dual-face) Jacobian
kernel.

1 t emp l a t e < c l a s s CONFIG>
2 __GLOBAL__
3 vo id e x a m p l e _ k e r n e l _ e d g e _ p a r a l l e l i s m ( . . . )
4 {
5 c o n s t e x p r i n t N = CONFIG : : N;
6 / / l o c a l v a r i a b l e d e c l a r a t i o n s
7

8 i n t n = BLOCKIDX_X∗BLOCKDIM_X+THREADIDX_X;
9 i n t g r i d _ s i z e = BLOCKDIM_X∗GRIDDIM_X;

10

11 f o r ( ; n < nedges ; n += g r i d _ s i z e )
12 {
13 / / Compute d e r i v e d s t a t e and s t o r e
14

15 / / Compute and s t o r e J a c o b i a n s (NxN)
16 f o r ( i n t k =0; k<N; k++) {
17 f o r ( i n t j =0 ; j <N; j ++) {
18 / / Compute ( j , k ) components
19 }
20 }
21

22 / / Add J a c o b i a n s t o g l o b a l d a t a
23 }
24 }

Listing 3 Hierarchical parallel edge (dual-face) Jacobian
kernel.

1 t emp l a t e < c l a s s CONFIG>
2 __GLOBAL__
3 vo id e x a m p l e _ k e r n e l _ h i e r a r c h i c a l _ p a r a l l e l i s m ( . . . )
4 {
5 c o n s t e x p r i n t N = CONFIG : : N;
6 / / l o c a l and s h a r e d v a r i a b l e d e c l a r a t i o n s
7

8 i n t n = BLOCKIDX_X∗BLOCKDIM_Y+THREADIDX_Y;
9 i n t g r i d _ s i z e = BLOCKDIM_Y∗GRIDDIM_X;

10

11 f o r ( ; n < nedges ; n += g r i d _ s i z e )
12 {
13 i f (THREADIDX_X == 0) {
14 / / Compute minimum d e r i v e d s t a t e
15 / / and s t o r e i n s h a r e d memory
16 }
17

18 __SYNCTHREADS ( ) ;
19

20 f o r ( i n t i =THREADIDX_X; i <N∗N; i +=BLOCK_DIM_X)
21 {
22 i n t j = i / N;
23 i n t k = i % N;
24

25 / / c o n s t r u c t ( j , k ) components i n p l a c e
26 / / and add t o g l o b a l d a t a
27 }
28 }
29 }
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Table 1 Relative performance of naïve and hierarchical parallel implementations of the inviscid Jacobian for 5
species and a two-temperature model (10 equations). Speedup is device-normalized with respect to FLUDA naïve
Intel Skylake 6148. The final column shows vendor-reported maximum hardware memory bandwidth (MBW)
normalized to Intel Skylake 6148.

Architecture Implementation Speedup Hardware MBW Ratio
Intel Skylake 6148 Fortran 0.73 1.00
Intel Skylake 6148 FLUDA Naïve 1.00 1.00
Intel Skylake 6148 FLUDA Hierarchical 0.89 1.00

NVIDIA 16 GB SXM V100 FLUDA Naïve 0.58 3.52
NVIDIA 16 GB SXM V100 FLUDA Hierarchical 4.41 3.52

B. Kernel Optimizations
FUN3D kernels of significance typically undergo heavy refactoring from Fortran to CUDA to achieve optimal

GPU performance [27]. Basic optimization strategies such as memory coalescing [43] are employed. Automatic
(thread-local) arrays, used heavily in FUN3D, can significantly hinder GPU performance if not minimized. These arrays
are minimized through parallelization, recomputation, and use of shared memory, though this is not an exhaustive list of
strategies. Hierarchical parallelism is used when a kernel contains multiple independent intermediate computations
within a work item. If there is significant thread divergence, multiple warps (or equivalent) are used. Aggressive use
of C++ templates to exclude unnecessary branches and define values at compile time can significantly reduce GPU
register pressure and thread divergence. Warp aggregation and other advanced strategies are discussed in Ref. [44].
Finally, GPUs are in-order processors and may be sensitive to the ordering of code statements. Through trial-and-error,
the code is reorganized heuristically until performance improves. After each optimization, the threading is tuned (see
Sec. III.B.1).

FUN3D optimizations are focused on kernels that dominate the run time. FUN3D is top-heavy in terms of kernel
performance: ten kernels (out of roughly fifty per simulation) are responsible for 90% of the run time. The linear solver
kernel is at least half the run time for most problems of interest. The top 3 kernels comprising 75% of the total run time
are all memory-bound and reach significant percentages of peak memory bandwidth (MBW) reported by NVIDIA’s
profiler and appear in Table 2. The memory performance of the linear solver has been investigated in detail in past
studies and has been confirmed with manual calculations [31–33].

Table 2 Percentage of peak memory bandwidth for the top 3 memory-bound kernels comprising 75% of the
total run time on an NVIDIA 40 GB SXM A100 GPU for a 3.7M point mixed-element grid.

Kernel Peak Memory Bandwidth [%]
Linear Solver 78

Viscous Jacobians 54
Inviscid Jacobians 62

1. Autotuner
FLUDA contains an autotuning framework that chooses optimal thread block parameters for a given kernel, template

parameters, and GPU architecture. FLUDA GPU kernels are typically launched with two-dimensional thread blocks.
The 𝑌 -thread index controls the number of work items (edges, in this case) processed by a block and the 𝑋-thread index
controls hierarchical parallelism within the work item. A matrix construction loop might prepare a 5 × 5 matrix in
shared memory using a single 𝑋 thread and enlist the remaining 𝑋 threads to write the matrix in a coalesced fashion to
global memory. When enabled, the autotuner calls the kernel with many different combinations of 𝑋 and 𝑌 threads
and records the best time. After the fastest thread block size is found, the launch bounds will also be tuned, which can
further lower register use and improve GPU occupancy.
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2. Architecture-Specific Code
GPU optimizations as described in Sec. III.B often improve FLUDA kernel performance on CPUs relative to the

legacy Fortran version (see Sec. IV). There are, however, instances in which architecture-specific code is required to
achieve optimal performance. This is true for FUN3D’s most expensive kernel, the linear solver. For this routine, the
structure required for optimal GPU performance does not make effective use of the CPUs large resources per thread or
its vector units. For this case, the CPU_GPU macro is used to call a specialized CPU function. Overall, there is less than
2% code divergence between architectures in FLUDA.

IV. Results
The first case examined is a RANS simulation of the NASA Common Research Model (CRM) at a transonic

condition run to machine zero iterative convergence on Intel and AMD CPUs and NVIDIA, AMD, and Intel GPUs. This
case demonstrates correctness on all architectures and is used to benchmark selected architectures. The second case is an
unsteady wall-modeled large-eddy simulation (WMLES) of the NASA CRM at takeoff and landing at low Mach number
conditions. This example demonstrates the approach for unsteady scale-resolving turbulent flows using many CPUs
and GPUs. A rotor in hover is then used to demonstrate moving bodies. Lastly, two hypersonic cases demonstrating
thermochemical nonequilibrium are examined. First, the Crew Exploration Vehicle (CEV) capsule is investigated at a
high-enthalpy hypersonic wind tunnel experimental condition. Second, the Sierra Space Dream Chaser© spaceplane is
investigated as a more complex configuration representative of next-generation aerospace vehicles.

The results presented are the fastest times obtained after testing a variety of compilers and optimization flags.
Fortran results were obtained using Intel ifort 19.0.5.281. FLUDA CPU results are obtained using g++ 10.3. GPU
results are obtained using vendor-specific compilers. HPE MPT is used on NASA systems and OpenMPI is used on
other systems. GPU-aware MPI is not used for the current results.

A. RANS Simulation of the NASA CRM at Transonic Conditions
The NASA Common Research Model (CRM) is used to demonstrate device-level performance for architectures of

interest [45]. Specifically, the Drag Prediction Workshop 4 test case 1 is analyzed. The geometry and CFD grid are
shown in Fig. 1. The mixed-element grid contains 3,675,916 vertices and 9,794,089 elements and is generated from
a workshop tetrahedral grid1 using FUN3D’s vgrid_merge_into_prisms utility. The flow conditions are 𝑀∞ = 0.85,
𝑅𝑒𝐶 = 5 × 106, 𝐶𝐿 = 0.5, and 𝑇∞ = 560 ◦R; an angle of attack of 2.41◦ is used to match the target lift coefficient. The
SA turbulence model is used [46] with a quadratic constitutive relation [47] (SA-QCR2000). Compact nearest-neighbor
edge-based viscous terms are employed [48]. Local time stepping is utilized with maximum meanflow and turbulent
Courant-Friedrichs-Lewy (CFL) numbers of 200 and 30, respectively. In total, 3000 iterations are run, with nonlinear
convergence obtained at roughly 2500 iterations.

Fig. 1 NASA CRM aircraft grid.
1https://dpw.larc.nasa.gov/DPW4/unstructured_Larc/NodeBase/dpw_wbt0_crs-3.6Mn_5.tgz; Last Accessed May 2, 2022.
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Various architectures are examined using FLUDA: a dual-socket Intel Skylake 6148 CPU node (40 total cores), a
dual-socket AMD EPYC 7742 CPU node (128 total cores), an NVIDIA 16 GB SXM V100 GPU (the fastest of common
variants), an NVIDIA 40 GB SXM A100 GPU (which has a lower memory bandwidth than the 80 GB variant), an
AMD MI210 GPU, and an Intel Data Center GPU Max Series (previously code named Ponte Vecchio). The legacy
Fortran implementation is run on the CPU nodes for comparison. Final drag values are listed in Table 3. All coefficients
agree to machine precision. Density residual convergence is plotted for all architectures in Fig. 2. Residual convergence
is also identical across architectures.

Device performance is presented in Table 4. Time to solution in seconds is presented. Performance generally
correlates with memory bandwidth. Vendor-reported maximum memory bandwidth is theoretical and not necessarily
obtained in practice [32]. Of note is that the FLUDA CPU implementation is faster than the Fortran CPU implementation.
The Fortran CPU code used in this case has been optimized and refactored with substantial vendor support to achieve a
speedup of ≈ 6.5× [49], and thus can be considered an optimized basis. The fastest reported device time is 7 minutes for
the NVIDIA 40 GB SXM A100 GPU. The kernel breakdown for a full time step (including the residual, Jacobian, and
linear solve portions) for this device is plotted in Fig. 3. For a full time step, the linear solver is approximately half the
run time and the residual and Jacobian each approximately one quarter of the run time. For this example, the Jacobian
is updated in only 13% of the iterations, shifting the run time to the linear solver ( ≈ 66% of run time) and residual
computations. NVIDIA GPU simulations with more Jacobian evaluations will see improved relative performance due to
high optimization levels for these complex kernels on NVIDIA architectures.

Table 3 Final CRM drag coefficient values for the various architectures.

Architecture Implementation 𝐶𝐷

Intel Skylake 6148 Fortran 1.435840192×10−2

Intel Skylake 6148 FLUDA 1.435840192×10−2

AMD EPYC 7742 Fortran 1.435840192×10−2

AMD EPYC 7742 FLUDA 1.435840192×10−2

NVIDIA V100 FLUDA 1.435840192×10−2

NVIDIA A100 FLUDA 1.435840192×10−2

AMD MI210 FLUDA 1.435840192×10−2

Intel GPU FLUDA 1.435840192×10−2

0 500 1000 1500 2000 2500 3000
Iterations

10

9

8

7

6

5

4

3

2

1

0

1

lo
g 1

0(
R

)

Fortran Intel Skylake 6148
FLUDA Intel Skylake 6148
Fortran AMD EPYC 7742
FLUDA AMD EPYC 7742
FLUDA NVIDIA V100
FLUDA NVIDIA A100
FLUDA AMD MI210
FLUDA Intel GPU

Fig. 2 Density residuals for various architectures.
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Table 4 Time to solution for various architectures. Speedup is device-normalized with respect to FLUDA Intel
Skylake 6148. Vendor-reported maximum hardware memory bandwidth (MBW) is normalized with respect to
Intel Skylake 6148.

Architecture Implementation Time [s] Speedup Hardware MBW Ratio Hardware MBW [GB/s]
Intel Skylake 6148 Fortran 3365 0.84 1.00 256 [50]
Intel Skylake 6148 FLUDA 2818 1.00 1.00 256
AMD EPYC 7742 Fortran 1738 1.62 1.60 409.6 [51]
AMD EPYC 7742 FLUDA 1639 1.72 1.60 409.6

NVIDIA 16 GB SXM V100 FLUDA 720 3.91 3.52 900 [52]
NVIDIA 40 GB SXM A100 FLUDA 430 6.55 6.05 1555 [53]

AMD MI210 FLUDA 620 4.55 6.40 1638.4 [54]

Linear Solver 53%

Jacobian

25%

Residual

20%

Misc

2%

Fig. 3 Kernel breakdown for a full time step for NASA CRM on an NVIDIA 40 GB SXM A100.

B. WMLES of the NASA High-Lift CRM
A WMLES capability has recently been implemented in FUN3D. The WMLES implementation largely follows the

methodology described in Ref. [55]. At each time step, flow field variables are extracted at predetermined exchange
locations, which are the first points off the wall in the present work. The extracted solutions serve as input to a simple
equilibrium wall model [56] to determine the local shear stress at each grid point on the solid-wall surface. Once
the shear stress is determined, it is used to compute boundary-face fluxes required for evaluating the residuals at the
boundary grid points. More details about the WMLES implementation in FUN3D can be found in Refs. [57, 58]. The
WMLES capability was initially enabled and assessed with CPU-centric legacy kernels and has been implemented in
FLUDA to facilitate computations in a multi-architecture environment.
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In this section, WMLES solutions and computational efficiency are evaluated for the NASA High-Lift Common
Research Model (CRM-HL) at a range of angles of attack with the flaps in a landing configuration. The NASA CRM-HL
configuration is a 10%-scale, semispan model that was tested in the QinetiQ 5-meter pressurized low-speed wind
tunnel [59]. The experimental data are used for evaluating CFD simulations as part of the 4th AIAA CFD High Lift
Prediction Workshop [60]. Free-air simulations are conducted for the nominal trailing-edge flap deflections of 40◦/37◦.
The flow conditions for this configuration are a freestream Mach number of 0.2, a Reynolds number of 5.49 million
based on the mean aerodynamic chord (MAC) of 275.8 inches and a reference temperature of 521 ◦R. A range of angles
of attack have been considered in this study including 7.05◦, 11.29◦, 17.05◦, 19.57◦, 20.55◦, and 21.47◦ for 𝐶𝐿,𝑚𝑎𝑥

predictions and to compare with wall-corrected experimental data. More details about the geometry, test parameters,
and related references are available from the workshop website [60].

The computational grid used in this work consists of approximately 419 million points and 812 million mixed-type
elements including hexahedra, tetrahedra, prisms, and pyramids. All surface boundaries for the fuselage, slat, wing, flap,
and nacelle use the wall model boundary condition. The nominal wall-normal spacing for this grid is approximately
0.13 inches, corresponding to a nominal Δ𝑦+𝑤 ≈ 100 based on a flat-plate approximation at freestream conditions and
the MAC reference length. The symmetry plane is located at 𝑦 = 0. The outer boundary is located approximately 100
MAC lengths away and uses a farfield Riemann invariant boundary condition. The simulations have been performed
with 1,000–2,000 time steps for a single convective time unit (CTU), based on the MAC and freestream velocity, and
the time-averaged quantities such as surface pressures and velocity components are collected over 5–15 CTUs after
the transients in the forces and moments have been eliminated. The implicit system of equations is solved using a
hierarchical adaptive nonlinear iteration method (HANIM), described in Ref. [61], which has resulted in 4–5 orders of
magnitude in residual reduction in 6–8 subiterations for the problems presented here.

Figure 4 depicts profiles of integrated lift and drag coefficients as a function of angles of attack in the WMLES
computations of the CRM-HL configuration. Compared to the experimental measurements, the WMLES solutions
show reasonable agreement throughout the wide range of angles of attack. In particular, the computed lift coefficient at
𝛼 = 19.57◦ that corresponds to the angle of attack near the experimental 𝐶𝐿,𝑚𝑎𝑥 shows about 1% deviation from the
measurement. For the post-stall cases, the WMLES lift predictions are consistent with the experimental data. In terms
of the drag predictions shown in Fig. 4(b), WMLES solutions exhibit good matches with the experimental data, except
for somewhat underpredicted drag in the highest angle-of-attack (𝛼 = 21.47◦) case. The discrepancy in drag in the
21.47◦ angle-of-attack case is possibly caused by the lack of tunnel-interference with the model in free-air simulations.
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Fig. 4 Lift and drag polar profiles for NASA CRM-HL WMLES computations.

Figure 5 displays contours of instantaneous density-gradient magnitude obtained by the WMLES approach to
visualize the basic flow structures around the CRM-HL configuration at the angle of attack of 𝛼 = 19.57◦. Four spanwise
stations are used, consisting of constant planes at 𝑦 = 174.5, 380.5, 638.0 and 1050.0 inches, from inboard to outboard.
At this critical angle of attack near the experimental maximum lift, due to complex interactions of the flows among the
inboard slat, wing leading edge, fuselage-wing junctures, and nacelle, complicated vortical structures and turbulent
eddies are generated and captured by the WMLES scheme. These shedding vortices propagate downstream and interact
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with the main-wing and slat wakes, making the flow field highly unsteady. Progressing from the inboard to the outboard
sections of the wing, the turbulent wakes behind the wing/flap become significantly smaller in the vertical direction.
However, the trailing-edge slat wake is well captured above the main element and all the way to the suction side of the
flap.

(a) 𝑦 = 174.5, overview (b) 𝑦 = 380.5, overview

(c) 𝑦 = 638.0, closeup view (d) 𝑦 = 1050.0, closeup view

Fig. 5 Contours of instantaneous density gradient magnitude of WMLES computations for NASA CRM-HL at
four spanwise stations (19.57◦); aircraft surface is colored by time-averaged pressures.

Performance and the corresponding resources are provided in Table 5. The computational time in minutes is assessed
for the solver to complete one CTU using 1000 steps per flow pass at the NASA Advanced Supercomputing (NAS)
facility. The CPU runs use 200 AMD EPYC 7742 nodes (25,600 total cores). The GPU run for FLUDA uses 27 4
× NVIDIA V100 nodes with 36-core Intel Skylake 6154 CPUs (108 V100s). The FLUDA CPU implementation is
observed to be 1.15× faster than the Fortran CPU version. The GPU setup enables a CTU to be simulated in about an
hour. Performance is approximately commensurate with the hardware memory bandwidth ratio between the different
architectures. One distinct difference for this example versus the other examples in this work is the use of the cell-based
viscous discretization scheme rather than the edge-based viscous discretization scheme [48, 62]. In an initial evaluation,
the edge-based viscous discretization scheme has shown an additional 20% acceleration (that is not included in the
table) for the current problem; the scheme will be further investigated and assessed for WMLES applications.

11



Table 5 CRM-HL WMLES run times. The computational grid used in this assessment consists of 419 million
points and 812 million mixed-type elements including hexahedra, tetrahedra, prisms, and pyramids. Wall time
per convective time unit (CTU) is shown on various architectures. Speedup is device-normalized with respect to
FLUDA AMD EPYC 7742. Vendor-reported maximum hardware memory bandwidth (MBW) is normalized
with respect to AMD EPYC 7742.

Architecture Implementation Time [min] per CTU Speedup Hardware MBW Ratio
200 AMD EPYC 7742 Fortran 80 0.87 1.00
200 AMD EPYC 7742 FLUDA 69 1.00 1.00
27 (4 × NVIDIA V100) FLUDA 60 2.13 2.20

C. Tilt Rotor Aeroacoustics Model
A rotor in hover conditions is used to demonstrate moving-grid capabilities across architectures. The Tilt Rotor

Aeroacoustics Model (TRAM) is considered, which is a 25% V-22 three-bladed rotor with geometric and dynamic
scaling. The model and geometry are detailed in Ref. [63]. The rotor radius, 𝑅, is 57 inches with a tip chord, ctip, of 5.5
inches. The Reynolds number based on the tip chord is 2.1 × 106. The rotor collective for this example is 14◦. The tip
Mach number is 0.62.

A mixed-element grid similar to that employed for a previous study described in Ref. [64] is used here. A prismatic
boundary layer mesh is used for the three blades, with a minimum wall spacing corresponding to approximately 𝑦+ ≈ 1.
The wake grid has a characteristic spacing of 10% ctip. The final grid is composed of 20,233,109 nodes and 97,302,140
elements, with approximately 10% of these elements comprising the prismatic boundary layer mesh immediately
adjacent to the blade surfaces and tetrahedral elements away from the blade surfaces. A centerline slice of the grid is
shown in Fig. 6. Although this mesh resolution is inadequate to fully resolve all relevant length scales, the current
approach is sufficient to demonstrate relative computational performance across architectures.

The physical time step size corresponds to a 1◦ azimuthal rotation of the blades. Temporal integration is performed
using a second-order backward-difference method. Ten subiterations are used, which provides a nominal reduction of
four orders of magnitude in the unsteady residual at each time step. The edge-based viscous discretization described
in Ref. [62] is used, and a Delayed Detached Eddy Simulation approach based on the one-equation model of Spalart
and Allmaras is used for turbulence closure [46, 65, 66]. The mesh undergoes a rigid-body rotation at each time step
through the use of a 4x4 matrix transform applied to the mesh coordinates as described in Ref. [67].

The hover figure of merit (FM) is computed using the thrust coefficient, 𝐶𝑇 , and the torque coefficient, 𝐶𝑄, as
FM = C3/2

T /(CQ
√

2). The value of FM converges after performing approximately four revolutions based on the initial
flow field. Isosurfaces of the Q-criterion are shown in Fig. 7 and comparison of the computed FM value with
experimental data taken from Ref. [68] is shown in Fig. 8. The figure of merit prediction on the current grid is within
2% of experimental data. Prior studies have shown improvements in accuracy with finer grid resolution and mesh
adaptation approaches [64, 69].

Performance is compared across various architectures and is presented in Table 6. CPU runs for Fortran and FLUDA
use 20 dual-socket AMD EPYC 7742 nodes with 2,560 total cores. GPU runs for FLUDA use 4 4 × NVIDIA V100
nodes with 36-core Intel Skylake 6154 CPUs (16 V100s). The time per revolution is about 19 minutes for the Fortran, 16
minutes for FLUDA on the same CPUs, and 9 minutes for the GPU-based approach. Normalizing to compare individual
hardware, a V100 is approximately the same performance as 2.38 AMD EPYC 7742 nodes, which is slightly larger than
the hardware memory bandwidth ratio. The GPU-based approach enables a converged value for the hover figure of
merit to be obtained in approximately 34 minutes.
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Fig. 6 Centerline slice of TRAM rotor volume grid with blades.

Fig. 7 Isosurfaces of Q-criterion (0.001 1/s) colored by velocity magnitude [m/s] for the TRAM rotor.
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Fig. 8 Figure of merit versus thrust coefficient with experimental data taken from Ref. [68].

Table 6 Time per revolution for the TRAM rotor on various architectures. Speedup is device-normalized
with respect to FLUDA AMD EPYC 7742. Vendor-reported maximum hardware memory bandwidth (MBW) is
normalized with respect to AMD EPYC 7742.

Architecture Implementation Time per Revolution [min] Speedup Hardware MBW Ratio
20 AMD EPYC 7742 Fortran 19.2 0.84 1.00
20 AMD EPYC 7742 FLUDA 16.2 1.00 1.00
4 (4 × NVIDIA V100) FLUDA 8.5 2.38 2.20

D. High-Speed Flow: Crew Exploration Vehicle
The flow over the Crew Exploration Vehicle (CEV) is considered. Specifically, a high-enthalpy test performed in

the CUBRC LENS-I facility in air [70] is investigated using a model with a radius, 𝑅, of 2.87 inches. In addition to
experimental pressure and heat transfer on the surface, NASA Data-Parallel Line Relaxation (DPLR) [71] data are also
available from Ref. [72] for further comparisons. Run 10, the highest enthalpy condition (𝐻0 = 12.4 MJ/kg), is simulated.
A 5-species, two-temperature gas model is used as in the DPLR simulation. The surface is modeled as a noncatalytic
cold (𝑇 = 𝑇𝑉 = 300 K) no-slip wall. The freestream temperature, assumed identical for both translational/rotational
and vibrational temperatures, density, and velocity are 631 K, 1.08×10−3 kg/m3, and 4601 m/s, respectively. The
freestream mass fractions are ®𝑌 = 𝑌N2 , 𝑌O2 , 𝑌NO, 𝑌O, 𝑌N = 0.7377, 0.1387, 0.0590, 0.0646, 0.0000. The angle of attack
is 28◦. Laminar flow is assumed. Edge-based diffusion methods [62] are used, which is shown to accelerate time to
solution by over a factor of two for a similar CPU run in the reference. Steady-state time stepping is employed.

A hybrid grid adaptation strategy is utilized following the approach in Ref. [73], where a fixed surface and prismatic
boundary layer are employed with NASA refine [74] adapting the remaining tetrahedra to the translational/rotational
temperature Hessian. An initial unstructured grid is generated using Capstone [75]. The heatshield surface spacing is
2% R, with the shoulder refined at 1% R. The boundary layer is extruded with an initial wall spacing of 2 × 10−6 R with
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40 layers and a growth rate of 1.2. The total boundary layer thickness is ≈1.5% R with aspect ratios of 10 at the edge of
the boundary layer. The aspect ratios near the wall are 5,000 to 10,000. The initial grid consists of 1,837,670 points,
1,130,796 tetrahedra, and 3,250,960 prisms. The target number of points is 3 million. Fifteen refine adaptation cycles
are performed. The final grid after 15 cycles consists of 3,049,876 points, 8,270,063 tetrahedra, and 3,250,960 prisms.
The initial and final grids are shown in Fig. 9. In total, 21,000 iterations are performed, with initial cycles running
more iterations to initialize the flow field. Later cycles run only 1,000 iterations each. Final iterative convergence is 4-5
orders of magnitude for all equations without limiter freezing. Heat transfer magnitudes were observed unchanged by
subsequent iterations and cycles.

Figure 10 depicts temperature contours for the capsule. The translational/rotational temperature peaks at 9700 K at
the shock and is smoothly captured due to grid adaptation. At this enthalpy, molecular oxygen dissociates completely
post shock and in the wake. Molecular nitrogen is partially dissociated, leading to significant nitric oxide at the shock
front. The bow shock and wake are captured well with anisotropic tetrahedra even using only 3 million total points in the
entire domain. Figure 11 plots surface quantities of interest. All quantities are smoothly captured on the unstructured
grid. The cell Reynolds number based on speed of sound is below one on the entire surface. Comparisons to experiment
and DPLR are shown in Fig. 12. Surface properties are smooth along the heatshield and backshell of the capsule.
Pressures agree extremely well with DPLR, but overpredict experiment slightly at the center and rear shoulder of the
heatshield. Heat transfer is slightly overpredicted versus experiment for both FUN3D and DPLR. FUN3D predicts
slightly larger heat transfer than DPLR. The shoulder heat transfer is more smoothly captured for FUN3D; it is unknown
if grid adaptation was used for the DPLR results. Further grid refinement is likely necessary for a more rigorous
comparison.

Fig. 9 Left: Initial CEV grid. Right: Final adapted CEV grid. The surface and boundary layer grids are fixed.
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Fig. 10 Left: Final CEV grid near the heatshield and on the centerline. Right: Translational/rotational
temperature contours in Kelvin.

Fig. 11 CEV surface contours for pressure coefficient, heat transfer, cell Reynolds number, and grid.
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Fig. 12 CEV comparisons to DPLR and experiment. Left: Surface pressure along the centerline. Right: Heat
transfer along the centerline.

Performance is compared across various architectures. CPU runs for Fortran and FLUDA use 15 dual-socket AMD
EPYC 7742 nodes with 1,920 total cores. GPU runs for FLUDA use 4 × NVIDIA V100 nodes with 36-core Intel
Skylake 6154 CPUs and a 4 × NVIDIA 40 GB A100 node with 128-core AMD EPYC 7742 CPUs. The case is also run
on a single NVIDIA 80 GB A100 GPU. The A100 GPU simulations are run using 8 ranks per GPU using the CUDA
Multi-process Service (MPS) to improve (CPU) I/O performance. Simulation performance is presented in Table 7.
NASA refine is run on only the CPUs using 10 adaptation passes per execution. Preprocessing and postprocessing is
also tabulated as refinement is also file based at this time. GPU-enabled in-core refinement should improve performance
for this approach. The Fortran implementation on 15 EPYC nodes completes the CFD in 104 minutes. FLUDA shows
≈30% speedup over Fortran, which is higher than that observed for perfect gas flows. We hypothesize much of this
improvement is due to compile-time values provided by C++ templates that are unavailable in Fortran. The 8 V100
GPUs complete the CFD in 59 minutes. The 4 A100 GPUs complete the CFD in 79 minutes. A single A100 GPU
completes the CFD in 262 minutes. Performance is generally commensurate with hardware memory bandwidth ratio.
Overall, a 3D capsule simulation workflow including wake using a 5-species two-temperature model and refine can be
run on a machine with only 1 NVIDIA A100 GPU in ≈6 hours.

One important detail to note is that these simulations are performed using edge-based viscous terms [48]. For
cell-based viscous terms, which have been the primary viscous terms in FUN3D for the last two decades and are still the
default as of this writing, FLUDA sees significantly higher speedups over Fortran due to templating and the reduction of
state variables. The edge-based viscous terms perform much better on both CPUs and GPUs, leaving a larger percentage
of the execution time to the linear solver, which is strongly memory-bound.

Table 7 CEV run times. I/O includes FUN3D preprocessing and postprocessing required for visualization and
refine. The NVIDIA A100 GPU runs use CUDA MPS with 8 MPI ranks. Multiple ranks per GPU generally
incurs a 5-10% compute overhead, but speeds up other non-GPU-enabled code such as I/O. The V100 GPU
results use a single MPI rank per GPU. The NVIDIA V100 nodes have 36-core Skylake 6154 CPUs. The NVIDIA
A100 nodes have 128-core dual-socket AMD EPYC 7742 CPUs. CFD speedup is device-normalized with respect
to FLUDA AMD EPYC 7742. Vendor-reported maximum hardware memory bandwidth (MBW) is normalized
with respect to AMD EPYC 7742.

Architecture Implementation Total [min] refine [min] I/O [min] CFD [min] Speedup Hardware MBW Ratio
15 AMD EPYC 7742 Fortran 126 11 11 104 0.76 1.00
15 AMD EPYC 7742 FLUDA 101 11 11 79 1.00 1.00
2 (4 × NVIDIA V100) FLUDA 162 82 21 59 2.51 2.20

4 × NVIDIA 40 GB SXM A100 FLUDA 150 57 14 79 3.75 3.80
1 × NVIDIA 80 GB A100 FLUDA 337 57 18 262 4.52 4.72
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E. High-Speed Flow: Dream Chaser
A second hypersonic benchmark is carried out on a more complex vehicle shape: the Sierra Space Dream Chaser©

spaceplane. The freestream reentry conditions are 5 km/s or Mach 15.8 and an angle of attack of 40◦ with zero side slip.
The wall boundaries of Dream Chaser are modeled as reaction cured glass (RCG) coating and assumed in radiative
equilibrium. Laminar flow is modeled using a 5-species, one-temperature model. Results are compared to those of
DPLR, which is considered a gold standard hypersonic structured CFD code.

The initial unstructured grid used for FUN3D consists of 8,027,447 points and 25,734,402 cells. The surface
spacing is roughly 0.0254 meters and the first cell height is specified as 5.0 × 10−6 meters. The anisotropic viscous
grid is generated with 35 layers and 10,911,866 prismatic cells. The remaining volume grid consists of 14,822,130
tetrahedra cells and just 406 pyramids. The number of adapted points is set to 4 million and the final grid consists of
12,238,724 points and 39,418,400 tetrahedral cells (with the identical number of prisms and pyramids as the original
grid). The DPLR multiblock structured grid consists of 29,441,082 points and 28,586,880 hexahedra cells. The DPLR
grid is adapted four times to gain full convergence of heat flux. Figures 14–16 show both solver’s grids before and after
adaptation, along with a close-up of the grid at the nose of the vehicle.

The results from FUN3D after adaptation are in good agreement with DPLR. The maximum stagnation pressure for
FUN3D is 0.18% higher than DPLR. Figure 17 shows the pressure contours and centerline comparisons. The centerline
pressures agree well and differences in the contours are nearly indistinguishable. Figure 18 compares the heat flux
results. The FUN3D maximum heating is 1.9% higher than DPLR. There is minor variation in heat flux near the
stagnation point for FUN3D’s result, which may suggest that the solution is not fully converged or that several more
adaptation cycles are required. Note that FUN3D with refine’s shock adaptation captures secondary shocks as seen in
FUN3D’s final grid in Fig. 14. Furthermore, refinement occurs across the flow field and is not limited strictly to shock
refinement, which other refinement methods commonly employ [76, 77]. Since DPLR only adapts along k-lines to
capture the bow shock, it cannot pick up secondary shocks.

Fig. 13 Sierra Space’s Dream Chaser outer mold line.
[Credit: Sierra Space Corporation]
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Fig. 14 Comparison of the initial and final DPLR and FUN3D grids.
[Credit: Sierra Space Corporation]

Fig. 15 Comparison of the surface grids for DPLR and FUN3D.
[Credit: Sierra Space Corporation]
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Fig. 16 Close-up comparison of the DPLR and FUN3D grids on the nose.
[Credit: Sierra Space Corporation]

Fig. 17 Pressure and heating contours for DPLR and FUN3D.
[Credit: Sierra Space Corporation]
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Fig. 18 Pressure and heating along the centerline for DPLR and FUN3D.
[Credit: Sierra Space Corporation]

CPU simulations are performed on 30 AMD EPYC 7742 nodes (3,840 cores). FUN3D GPU simulations are
performed on 4 4 × NVIDIA V100 nodes with 36-core Intel Skylake 6154 CPUs (16 V100s). Fifteen refine cycles are
performed for the FUN3D approach. In total, 21,000 iterations are run across the cycles, with the initial cycles running
more iterations to ensure smooth shock fronts for successful adaptations. Table 8 provides run time information for the
different architectures and implementations. Similar to the CEV example, I/O and refine are separated to emphasize the
CFD performance. The wall time is several hours for both architectures. FLUDA on the CPU is 1.20× faster than the
legacy Fortran implementation, attributed primarily due to templating on the gas model physics (e.g., the number of
species). The CFD on the four GPU nodes is 1.14× faster than 30 CPU nodes. CFD performance is commensurate with
hardware memory bandwidth ratio as observed in other sections. While this case may be run on fewer GPUs (1 node),
the I/O and refine overhead become very large and necessitate alternate strategies such as running refine separately
using additional CPU nodes. Comparisons to DPLR are shown in Table 9; run times are comparable. We note that the
discretization and solution algorithms for the two solvers differ.

Table 8 Dream Chaser run times. I/O includes FUN3D preprocessing and postprocessing required for
visualization and refine. A single MPI rank per GPU is utilized. The NVIDIA V100 nodes have 36-core
Skylake CPUs. CFD speedup is device-normalized with respect to FLUDA AMD EPYC 7742. Vendor-
reported maximum hardware memory bandwidth (MBW) is normalized with respect to AMD EPYC 7742.

[Credit: Sierra Space Corporation]

Architecture Implementation Total [min] refine [min] I/O [min] CFD [min] Speedup Hardware MBW Ratio
30 AMD EPYC 7742 Fortran 132 24 7 101 0.83 1.00
30 AMD EPYC 7742 FLUDA 115 24 7 84 1.00 1.00
4 (4 × NVIDIA V100) FLUDA 293 180 39 74 2.13 2.20

Table 9 Dream Chaser simulation performance for FUN3D and DPLR on 30 AMD EPYC 7742 nodes (3,840
cores). CFD time includes preprocessing and postprocessing time (I/O).

[Credit: Sierra Space Corporation]

Code DOFs Iterations refinement [min] CFD [min] Total [min]
DPLR 28.6M 7000 6 52 58

FLUDA CPU 12.2M 21000 24 91 115
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V. Summary
A multi-architecture approach for implicit CFD on unstructured grids has been described and results have been

demonstrated across the speed range from low subsonic conditions for an aircraft in a high-lift configuration to
hypersonic reentry vehicles. A thin abstraction layer above CUDA C++ similar to AMD’s HIP is employed. Diverging
architecture-specific code is minimal and comprises less than 2% of the total lines of code. The abstractions are roughly
500 lines of code and enable NVIDIA GPU usage with CUDA C++ with only an NVIDIA software stack, CPU usage
with only an ISO C++ compiler, AMD GPU usage with AMD HIP, and Intel GPU usage with SYCL. CPU results
using the multi-architecture GPU-first approach are generally faster than the legacy Fortran implementation. Results on
various architectures show that performance scales with memory bandwidth as expected of a code with low arithmetic
intensity. Performant GPU-enabled CFD software enables design cycles and database generation to occur using less
time and fewer resources for both engineers using a single workstation and those with access to large computing clusters.
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